Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Oxymatrinium tetrachloridoferrate(III)

Xiong He, Xing Chuan Wei,* Yu Chang Tian and Jia Xiong Lai

School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510000, People's Republic of China Correspondence e-mail: xing6363@126.com

Received 9 December 2011; accepted 4 January 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.061; data-to-parameter ratio = 19.6.

The asymmetric unit of the title compound, $(C_{15}H_{25}N_2O_2)$ -[FeCl₄], contains a tetrachloridoferrate(III) anion and a oxymatrinium cation [oxymatrine is (4R,7aS,13aR,13bR,-13cS)-dodecahydro-1*H*,5*H*,10*H*-dipyrido[2,1-*f*:3',2',1'-*ij*][1,6]naphthyridin-10-one 4-oxide]. The conformation of oxymatrine is similar to that of matrine with one ring having a halfchair conformation, while the others have chair conformations. Chiral chains of cations along the *c* axis are formed by $O-H\cdots O$ hydrogen bonds.

Related literature

For related structures, see: Chen *et al.* (2011); Jin *et al.* (2005, 2009); Zhang *et al.* (2003). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For the biological activity of oxymatrine, see: Song *et al.* (2006); Wang *et al.* (2005); Xiang *et al.* (2002); Zhang *et al.* (2001, 2009); Sun *et al.* (2008). Oxymatrine is an alkaloid extracted from the Chinese herb *Sophora alopecuraides* L, see: Lai *et al.* (2003). For the preparation and studies of related salts, see: Mao *et al.* (2008); Li (2006).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{15}{\rm H}_{25}{\rm N}_{2}{\rm O}_{2})[{\rm FeCl}_{4}]\\ M_{r}=463.02\\ {\rm Orthorhombic},\ P2_{1}2_{1}2_{1}\\ a=7.7919\ (4)\ {\rm \AA}\\ b=11.9518\ (6)\ {\rm \AA}\\ c=21.1315\ (10)\ {\rm \AA} \end{array}$

 $V = 1967.92 (17) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.32 \text{ mm}^{-1}$ T = 173 K0.45 \times 0.26 \times 0.25 mm Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{min} = 0.588, T_{max} = 0.734$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	$\Delta \rho_{\rm m}$
$wR(F^2) = 0.061$	$\Delta \rho_{\rm m}$
S = 1.03	Abs
4267 reflections	17
218 parameters	Flac
H-atom parameters constrained	

9963 measured reflections 4267 independent reflections 3812 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.020$

 $\begin{array}{l} \Delta \rho_{max} = 0.31 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.28 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1787 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.006 \mbox{ (14)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^i$	0.84	1.76	2.5935 (19)	171

Symmetry code: (i) x + 1, y, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Guangzhou University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2043).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Z. F., Mao, L., Liu, L. M., Liu, Y. C., Peng, Y., Hong, X., Wang, H. H., Liu, H. G. & Liang, H. (2011). J. Inorg. Biochem. 105,171–180.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jin, Z.-M., Li, Z.-G., Li, L., Li, M.-C. & Hu, M.-L. (2005). Acta Cryst. E61, m2466–m2468.
- Jin, Z. M., Ma, L. L., Wei, W. X. & Li, Y. Q. (2009). J. Struct. Chem. 50, 190– 194.
- Lai, J. P., He, X. W., Jiang, Y. & Chen, F. (2003). Anal. Bioanal. Chem. 375, 264–269.
- Li, L. (2006). PhD Thesis, Zhejiang University of Technology, People's Republic of China.
- Mao, L., Liu, L. M., Liu, Y. C., Chen, Z. F., Liu, H. G. & Liang, H. (2008). J. Guangxi Normal Univ. Nat. Sci. Ed. 26, 60–63.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, G. B., Luo, Q., Qin, J., Wang, L., Shi, Y. S. & Sun, C. X. (2006). Colloids Surf. B Biointerfaces, 48, 1–5.
- Sun, H. L., Li, L., Shang, L., Zhao, D., Dong, D. L., Qiao, G. F., Liu, Y., Chu, W. F. & Yang, B. F. (2008). *Phytother. Res.* 22, 985–989.
- Wang, S. J., Wang, G. J., Li, X. T., Sun, J. G., Ma, R. L. & Sheng, L. S. (2005). J. Chromatogr. B, 817, 319–325.
- Xiang, X. X., Wang, G. J., Cai, X. & Li, Y. L. (2002). *Chin. Med. J.* **115**, 593–596. Zhang, L. P., Jiang, J. K., Tam, J. W. O., Zhang, Y., Liu, X. S., Xu, X. R., Liu,
- B. Z. & He, Y. J. (2001). Leuk. Res. 25, 793–800. Zhang, Z. T., Yang, B. L., Liu, Q. G. & Yu, K. B. (2003). Acta Chim. Sin. 61,
- 1058–1064.
- Zhang, Y., Zhang, H., Yu, P., Liu, Q., Liu, K., Duan, H., Luan, G., Yagasaki, K. & Zhang, G. (2009). *Cytotechnology*, **59**, 191–200.

supplementary materials

Acta Cryst. (2012). E68, m137 [doi:10.1107/S1600536812000281]

Oxymatrinium tetrachloridoferrate(III)

X. He, X. C. Wei, Y. C. Tian and J. X. Lai

Comment

Oxymatrine is an alkaloid extracted from the Chinese herb Sophora alopecuraides *L* (Lai *et al.*, 2003). It has been reported that oxymatrine plays important roles as an anti-arrhythmic, in immunity regulation, as an anti-tumor agent among other applications (Song *et al.*, 2006). It is extensively used in China for treatment of viral hepatitis, cancer, cardiac diseases (such as viral myocarditis), and skin diseases (such as psoriasis and eczema) (Wang *et al.*, 2005). A mechanistic study showed that oxymatrine could inhibit apoptotic cell death in hepatocytes (Xiang *et al.*, 2002) as well as scavenge hydroxyradicals and influence ion channels of cardiomyocytes (Sun *et al.*, 2008). The synthesis of similar compounds has been reported (Jin *et al.*, 2005).

The asymmetric unit of (I) is illustrated in Fig. 1. The geometry of the $[FeCl_4]^-$ ion compares favorably with that reported previously (Zhang *et al.*, 2003). In the oxymatrinium cation (oxygen O2 is protonated) (Fig. 1), the D ring (containing atom C15) has a half-chair conformation while the other rings adopt chair forms. The cations are linked *via* O—H···O hydrogen bonds forming a zigzag chain motif (Fig. 2, Table 1).

Experimental

A mixture of FeCl₃.6H₂O (0.135 g, 0.5 mmol) and oxymatrine (0.132 g, 0.5 mmol) dissolved in ethanol (20 ml) was refluxed with stirring. A light-yellow precipitate appeared after a few minutes and an aqueous HCl solution (1 M) was added drop-wise until the solution became clear. After standing for two days yellow prismatic crystals were observed which were immediately recovered by filtration and copiously washed with methanol.Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

All H atoms were placed in calculated positions and allowed ride on their parent atoms at distances of 0.84 Å (O—H), 0.99 Å (methylene) and 1.00 Å (methyne), and constrained to ride on their parent atoms with $U_{iso}(H) = 1.5$ times $U_{eq}(O)$ and 1.2 times U_{eq} (C–methylene and C–methyne), respectively.

Figures

Fig. 1. The asymmetric unit of (I) with atom labels and 50% probability displacement ellipsoids.

Fig. 2. Part of the packing of (I) showing the chiral chain running along the c axis. Hydrogen bonds are depicted as dashed lines. H atoms not involved in these interactions have been omitted.

F(000) = 956 $D_{\rm x} = 1.563 \text{ Mg m}^{-3}$

 $\theta = 2.6-27.1^{\circ}$ $\mu = 1.32 \text{ mm}^{-1}$ T = 173 KPrism, yellow

 $0.45 \times 0.26 \times 0.25 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6437 reflections

Oxymatrinium tetrachloridoferrate(III)

Crystal data
(C15H25N2O2)[FeCl4]
$M_r = 463.02$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
<i>a</i> = 7.7919 (4) Å
<i>b</i> = 11.9518 (6) Å
<i>c</i> = 21.1315 (10) Å
$V = 1967.92 (17) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer	4267 independent reflections
Radiation source: fine-focus sealed tube	3812 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.020$
ω scans	$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -9 \rightarrow 9$
$T_{\min} = 0.588, T_{\max} = 0.734$	$k = -7 \rightarrow 15$
9963 measured reflections	$l = -23 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.061$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0334P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
4267 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
218 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 1787 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.006 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{Z} х y Fe1 0.02484 (8) 0.48378 (4) 0.01347 (2) 0.169548 (12) Cl1 0.48652 (8) -0.12257 (4) 0.23956 (2) 0.03028 (12) Cl2 0.72310 (9) 0.10944 (6) 0.17647 (3) 0.04546 (17) C13 0.25496(9)0.11672 (6) 0.18583 (3) 0.04688 (18) Cl4 0.46744 (8) -0.05810(5)0.07447(2)0.03739 (14) N1 1.1039(2)0.60782 (15) 0.13234 (8) 0.0221(4)C2 1.1716 (3) 0.72196 (19) 0.14985 (10) 0.0276(5)H2A 1.2898 0.033* 0.7305 0.1334 H2B 1.1759 0.7290 0.1965 0.033* C3 1.0591 (3) 0.81319 (19) 0.12295 (11) 0.0298(5)H3A 1.0615 0.8094 0.0762 0.036* H3B 1.1048 0.8870 0.1358 0.036* C4 0.8751 (3) 0.8018 (2) 0.14585 (11) 0.0325 (5) H4A 0.8030 0.039* 0.8576 0.1237 H4B 0.8708 0.8189 0.1917 0.039* C5 0.8001 (3) 0.68571 (19) 0.13492 (10) 0.0259 (5) Н5 0.6964 0.6806 0.1627 0.031* C6 0.9204 (3) 0.59318 (19) 0.15665 (9) 0.0248 (5) H6 0.9271 0.5996 0.2038 0.030* C7 0.14298 (10) 0.8473 (3) 0.47659 (19) 0.0272 (5) H7 0.7408 0.4703 0.1692 0.033* C8 0.9697 (3) 0.38652 (19) 0.16806 (11) 0.0381 (5) H8A 0.9718 0.3896 0.2149 0.046* H8B 0.046* 0.9267 0.3118 0.1555 C9 1.1505 (3) 0.40203 (19) 0.14288 (12) 0.0366 (6) H9A 1.2269 0.3446 0.1615 0.044* H9B 1.1506 0.3921 0.0964 0.044* C10 1.2176 (3) 0.15907 (10) 0.0298 (5) 0.51723 (19) H10A 1.2239 0.5253 0.2056 0.036* H10B 1.3351 0.5258 0.1419 0.036* C11 0.7893 (3) 0.46034 (17) 0.07363 (9) 0.0235 (4) H11 0.8923 0.4642 0.0455 0.028* C12 0.7037 (3) 0.34673 (18) 0.06509(11) 0.0328 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H12A	0.7916	0.2870	0.0663	0.039*
H12B	0.6216	0.3335	0.1000	0.039*
C13	0.6095 (3)	0.3433 (2)	0.00198 (12)	0.0369 (6)
H13A	0.6897	0.3611	-0.0329	0.044*
H13B	0.5620	0.2675	-0.0054	0.044*
C14	0.4664 (3)	0.4280 (2)	0.00382 (12)	0.0402 (6)
H14A	0.4237	0.4395	-0.0398	0.048*
H14B	0.3706	0.3968	0.0291	0.048*
C15	0.5150 (3)	0.53988 (18)	0.03113 (9)	0.0267 (4)
N16	0.6714 (2)	0.55307 (14)	0.05703 (8)	0.0213 (4)
C17	0.7358 (3)	0.66798 (17)	0.06706 (10)	0.0232 (4)
H17A	0.6427	0.7220	0.0580	0.028*
H17B	0.8308	0.6829	0.0371	0.028*
01	0.41292 (18)	0.62004 (14)	0.02719 (7)	0.0319 (4)
O2	1.09826 (17)	0.59837 (13)	0.06528 (6)	0.0218 (3)
H2	1.1963	0.6109	0.0503	0.033*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Fe1	0.03331 (16)	0.02190 (14)	0.01931 (13)	-0.00039 (14)	0.00051 (12)	-0.00073 (11)
Cl1	0.0359 (3)	0.0272 (2)	0.0277 (2)	-0.0024 (3)	-0.0005 (2)	0.00547 (19)
Cl2	0.0571 (4)	0.0398 (4)	0.0395 (3)	-0.0238 (3)	-0.0061 (3)	0.0081 (3)
C13	0.0607 (4)	0.0372 (4)	0.0427 (4)	0.0213 (3)	0.0135 (3)	0.0028 (3)
Cl4	0.0444 (3)	0.0461 (3)	0.0216 (2)	0.0090 (3)	-0.0043 (2)	-0.0082 (2)
N1	0.0239 (8)	0.0255 (9)	0.0169 (8)	-0.0008 (8)	-0.0052 (7)	-0.0010 (8)
C2	0.0260 (11)	0.0290 (12)	0.0277 (11)	-0.0047 (9)	-0.0072 (9)	-0.0038 (10)
C3	0.0318 (12)	0.0205 (10)	0.0372 (12)	-0.0016 (9)	-0.0087 (9)	-0.0025 (9)
C4	0.0284 (11)	0.0307 (13)	0.0383 (13)	0.0028 (10)	-0.0043 (10)	-0.0100 (11)
C5	0.0211 (10)	0.0325 (13)	0.0240 (11)	0.0007 (9)	0.0035 (8)	-0.0054 (9)
C6	0.0249 (10)	0.0335 (12)	0.0160 (10)	-0.0037 (9)	0.0030 (8)	-0.0001 (9)
C7	0.0281 (10)	0.0297 (12)	0.0237 (10)	-0.0040 (10)	0.0018 (8)	0.0046 (10)
C8	0.0486 (14)	0.0297 (11)	0.0359 (12)	-0.0076 (11)	-0.0129 (12)	0.0132 (10)
C9	0.0415 (13)	0.0247 (12)	0.0436 (14)	0.0044 (10)	-0.0142 (11)	0.0045 (11)
C10	0.0322 (11)	0.0299 (12)	0.0272 (11)	0.0048 (10)	-0.0105 (9)	0.0030 (10)
C11	0.0203 (9)	0.0239 (11)	0.0265 (11)	-0.0011 (8)	0.0002 (8)	0.0028 (9)
C12	0.0337 (12)	0.0228 (11)	0.0419 (13)	-0.0032 (10)	-0.0013 (10)	0.0007 (10)
C13	0.0362 (13)	0.0304 (13)	0.0441 (14)	-0.0097 (11)	0.0005 (11)	-0.0084 (11)
C14	0.0318 (13)	0.0401 (13)	0.0487 (14)	-0.0093 (12)	-0.0080 (11)	-0.0059 (11)
C15	0.0210 (10)	0.0336 (11)	0.0257 (10)	-0.0028 (10)	0.0029 (9)	0.0030 (8)
N16	0.0190 (8)	0.0225 (9)	0.0226 (9)	-0.0022 (7)	0.0014 (6)	0.0005 (7)
C17	0.0204 (10)	0.0214 (10)	0.0278 (10)	0.0004 (8)	-0.0010 (9)	-0.0013 (9)
01	0.0194 (7)	0.0359 (9)	0.0404 (9)	-0.0004 (7)	-0.0015 (6)	0.0040 (8)
O2	0.0190 (7)	0.0307 (8)	0.0157 (6)	-0.0011 (6)	0.0001 (5)	-0.0008 (6)

Geometric parameters (Å, °)

Fe1—Cl4	2.1874 (6)	C8—H8A	0.9900
Fe1—Cl2	2.1942 (7)	C8—H8B	0.9900

Fe1—Cl3	2.1954 (7)	C9—C10	1.512 (3)
Fe1—Cl1	2.1984 (5)	С9—Н9А	0.9900
N1—O2	1.422 (2)	С9—Н9В	0.9900
N1—C2	1.509 (3)	C10—H10A	0.9900
N1—C10	1.509 (3)	C10—H10B	0.9900
N1—C6	1.529 (3)	C11—N16	1.482 (3)
C2—C3	1.510 (3)	C11—C12	1.523 (3)
C2—H2A	0.9900	C11—H11	1.0000
C2—H2B	0.9900	C12—C13	1.523 (3)
C3—C4	1.520 (3)	C12—H12A	0.9900
С3—НЗА	0.9900	C12—H12B	0.9900
С3—Н3В	0.9900	C13—C14	1.507 (3)
C4—C5	1.523 (3)	C13—H13A	0.9900
C4—H4A	0.9900	C13—H13B	0.9900
C4—H4B	0.9900	C14—C15	1.505 (3)
C5—C6	1.521 (3)	C14—H14A	0.9900
C5—C17	1.534 (3)	C14—H14B	0.9900
С5—Н5	1.0000	C15—O1	1.248 (3)
C6—C7	1.533 (3)	C15—N16	1.345 (3)
С6—Н6	1.0000	N16—C17	1.478 (3)
С7—С8	1.533 (3)	C17—H17A	0.9900
C7—C11	1.546 (3)	С17—Н17В	0.9900
С7—Н7	1.0000	O2—H2	0.8400
C8—C9	1.518 (4)		
Cl4—Fe1—Cl2	108.37 (3)	С7—С8—Н8В	109.3
Cl4—Fe1—Cl3	108.45 (3)	H8A—C8—H8B	107.9
Cl2—Fe1—Cl3	112.70 (3)	C10—C9—C8	110.7 (2)
Cl4—Fe1—Cl1	109.23 (2)	С10—С9—Н9А	109.5
Cl2—Fe1—Cl1	109.48 (3)	С8—С9—Н9А	109.5
Cl3—Fe1—Cl1	108.55 (3)	С10—С9—Н9В	109.5
O2—N1—C2	109.09 (15)	С8—С9—Н9В	109.5
O2—N1—C10	109.52 (15)	Н9А—С9—Н9В	108.1
C2-N1-C10	110.59 (15)	N1-C10-C9	111.44 (17)
O2—N1—C6	107.26 (14)	N1—C10—H10A	109.3
C2—N1—C6	110.36 (17)	C9—C10—H10A	109.3
C10—N1—C6	109.95 (16)	N1-C10-H10B	109.3
N1—C2—C3	110.95 (16)	С9—С10—Н10В	109.3
N1—C2—H2A	109.4	H10A-C10-H10B	108.0
С3—С2—Н2А	109.4	N16-C11-C12	111.55 (17)
N1—C2—H2B	109.4	N16—C11—C7	108.17 (16)
С3—С2—Н2В	109.4	C12—C11—C7	110.63 (18)
H2A—C2—H2B	108.0	N16-C11-H11	108.8
C2—C3—C4	111.3 (2)	C12-C11-H11	108.8
С2—С3—НЗА	109.4	С7—С11—Н11	108.8
С4—С3—Н3А	109.4	C13—C12—C11	109.82 (18)
С2—С3—Н3В	109.4	C13—C12—H12A	109.7
C4—C3—H3B	109.4	C11—C12—H12A	109.7
НЗА—СЗ—НЗВ	108.0	C13—C12—H12B	109.7
C3—C4—C5	113.30 (19)	C11—C12—H12B	109.7

supplementary materials

C3—C4—H4A	108.9	H12A—C12—H12B	108.2
C5—C4—H4A	108.9	C14—C13—C12	108.42 (19)
C3—C4—H4B	108.9	C14—C13—H13A	110.0
C5—C4—H4B	108.9	С12—С13—Н13А	110.0
H4A—C4—H4B	107.7	C14—C13—H13B	110.0
C6—C5—C4	112.33 (17)	С12—С13—Н13В	110.0
C6—C5—C17	112.53 (17)	H13A—C13—H13B	108.4
C4—C5—C17	113.14 (19)	C15—C14—C13	114.89 (19)
С6—С5—Н5	106.0	C15—C14—H14A	108.5
С4—С5—Н5	106.0	C13—C14—H14A	108.5
С17—С5—Н5	106.0	C15—C14—H14B	108.5
C5—C6—N1	113.07 (17)	C13—C14—H14B	108.5
C5—C6—C7	112.02 (17)	H14A—C14—H14B	107.5
N1—C6—C7	112.84 (18)	O1-C15-N16	120.96 (19)
С5—С6—Н6	106.1	O1-C15-C14	119.75 (19)
N1—C6—H6	106.1	N16-C15-C14	119.22 (19)
С7—С6—Н6	106.1	C15—N16—C17	118.37 (17)
C8—C7—C6	110.00 (17)	C15—N16—C11	124.78 (17)
C8—C7—C11	114.93 (19)	C17—N16—C11	116.77 (15)
C6—C7—C11	113.68 (17)	N16—C17—C5	111.93 (17)
С8—С7—Н7	105.8	N16—C17—H17A	109.2
С6—С7—Н7	105.8	С5—С17—Н17А	109.2
С11—С7—Н7	105.8	N16—C17—H17B	109.2
C9—C8—C7	111.76 (18)	С5—С17—Н17В	109.2
С9—С8—Н8А	109.3	H17A—C17—H17B	107.9
С7—С8—Н8А	109.3	N1—O2—H2	109.5
С9—С8—Н8В	109.3		
O2—N1—C2—C3	59.1 (2)	C2—N1—C10—C9	179.15 (19)
C10—N1—C2—C3	179.66 (18)	C6—N1—C10—C9	57.0 (2)
C6—N1—C2—C3	-58.5 (2)	C8—C9—C10—N1	-58.5 (2)
N1—C2—C3—C4	57.9 (2)	C8—C7—C11—N16	179.53 (16)
C2—C3—C4—C5	-52.4 (3)	C6—C7—C11—N16	-52.5 (2)
C3—C4—C5—C6	47.8 (2)	C8—C7—C11—C12	57.1 (2)
C3—C4—C5—C17	-81.0 (2)	C6—C7—C11—C12	-174.92 (18)
C4C5C6N1	-48.8 (2)	N16-C11-C12-C13	45.7 (2)
C17—C5—C6—N1	80.3 (2)	C7—C11—C12—C13	166.21 (18)
C4—C5—C6—C7	-177.63 (17)	C11—C12—C13—C14	-64.4 (2)
C17—C5—C6—C7	-48.6 (2)	C12-C13-C14-C15	44.5 (3)
O2—N1—C6—C5	-64.5 (2)	C13—C14—C15—O1	170.62 (19)
C2—N1—C6—C5	54.2 (2)	C13—C14—C15—N16	-6.5 (3)
C10—N1—C6—C5	176.50 (16)	O1-C15-N16-C17	-14.0 (3)
O2—N1—C6—C7	63.9 (2)	C14—C15—N16—C17	163.0 (2)
C2—N1—C6—C7	-177.34 (16)	O1—C15—N16—C11	169.15 (18)
C10—N1—C6—C7	-55.1 (2)	C14-C15-N16-C11	-13.8 (3)
C5—C6—C7—C8	-177.77 (18)	C12—C11—N16—C15	-6.8 (3)
N1—C6—C7—C8	53.3 (2)	C7—C11—N16—C15	-128.66 (19)
C5—C6—C7—C11	51.7 (2)	C12—C11—N16—C17	176.39 (17)
N1—C6—C7—C11	-77.2 (2)	C7—C11—N16—C17	54.5 (2)
C6—C7—C8—C9	-53.7 (2)	C15—N16—C17—C5	129.11 (19)

C11—C7—C8—C9 C7—C8—C9—C10 O2—N1—C10—C9	76.1 (2) 56.7 (2) -60.6 (2)	C11—N16- C6—C5—C C4—C5—C	C17C5 217N16 217N16	-53.8 (2) 48.7 (2) 177.31 (17)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> –	–Н Н…А	1 <i>D</i> …	D—H···A
O2—H2···O1 ⁱ	0.8	4 1.76	2.59	935 (19) 171
Symmetry codes: (i) $x+1$, y , z .				

Fig. 1

Fig. 2

